If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36^-3x+3=(1/216)x+1
We move all terms to the left:
36^-3x+3-((1/216)x+1)=0
Domain of the equation: 216)x+1)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-3x-((+1/216)x+1)+3+36^=0
We add all the numbers together, and all the variables
-3x-((+1/216)x+1)=0
We multiply all the terms by the denominator
-3x*216)x+1)-((+1=0
Wy multiply elements
-648x^2+1=0
a = -648; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-648)·1
Δ = 2592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2592}=\sqrt{1296*2}=\sqrt{1296}*\sqrt{2}=36\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{2}}{2*-648}=\frac{0-36\sqrt{2}}{-1296} =-\frac{36\sqrt{2}}{-1296} =-\frac{\sqrt{2}}{-36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{2}}{2*-648}=\frac{0+36\sqrt{2}}{-1296} =\frac{36\sqrt{2}}{-1296} =\frac{\sqrt{2}}{-36} $
| 4x+46-5x=48 | | x+x+51=129 | | (18-18x)*(1-x)=-8 | | -5(r+8)=-72 | | 8(3x-2)-4(2x+5)=0 | | 2w+w-1=180 | | 3(2x-1)=4x+8+x | | 3(x+4)/5=2x-4 | | x=2x=42 | | 19z-4+12z=16z-1+14,33z | | 9x+2x-17x=66 | | 6(2y-3)+42=180 | | 19=22+x | | 1/2x^2-11x+9=-47 | | 0.50x+0.35(10)=0.25(102) | | 19z-4+12z=16z-1+14,33-9 | | 8x^2-36x+26=0 | | 9=2(5z+4)+6 | | X+10x÷100=22000 | | 50+n=150 | | 5-9x=-96 | | 9x-9+108=180 | | 5-(4x+3)=7-2(5-3x) | | 4^x-5=3 | | 3250-65x=4550-130x | | 21+5c=51 | | y=50(0.2)^3 | | 2k+2k=−10 | | 8(d+3)=64 | | y=50(0.2)^2 | | 4(q+2)-3q=-8 | | 7(x-2)=3x-12 |